Concept Relevance Propagation
In From attribution maps to human-understandable explanations through Concept Relevance Propagation (CRP), Achtibat et al. propose the conditioning of LRP relevances on individual features of a model.
This package is part the Julia-XAI ecosystem and builds on the basics shown in the Getting started guide.
We start out by loading the same pre-trained LeNet5 model and MNIST input data:
using RelevancePropagation
using Flux
model = BSON.load("../model.bson", @__MODULE__)[:model] # load pre-trained LeNet-5 model
Chain(
Conv((5, 5), 1 => 6, relu), # 156 parameters
MaxPool((2, 2)),
Conv((5, 5), 6 => 16, relu), # 2_416 parameters
MaxPool((2, 2)),
Flux.flatten,
Dense(256 => 120, relu), # 30_840 parameters
Dense(120 => 84, relu), # 10_164 parameters
Dense(84 => 10), # 850 parameters
) # Total: 10 arrays, 44_426 parameters, 174.344 KiB.
using MLDatasets
using ImageCore, ImageIO, ImageShow
index = 10
x, y = MNIST(Float32, :test)[10]
input = reshape(x, 28, 28, 1, :)
convert2image(MNIST, x)
Step 1: Create LRP analyzer
To create a CRP analyzer, first define an LRP analyzer with your desired rules:
composite = EpsilonPlusFlat()
lrp_analyzer = LRP(model, composite)
LRP(
Conv((5, 5), 1 => 6, relu) => FlatRule(),
MaxPool((2, 2)) => ZeroRule(),
Conv((5, 5), 6 => 16, relu) => ZPlusRule(),
MaxPool((2, 2)) => ZeroRule(),
Flux.flatten => PassRule(),
Dense(256 => 120, relu) => EpsilonRule{Float32}(1.0f-6),
Dense(120 => 84, relu) => EpsilonRule{Float32}(1.0f-6),
Dense(84 => 10) => EpsilonRule{Float32}(1.0f-6),
)
Step 2: Define concepts
Then, specify the index of the layer on the outputs of which you want to condition the explanation. In this example, we are interested in the outputs of the last convolutional layer, layer 3:
feature_layer = 3 # index of relevant layer in model
model[feature_layer] # show layer
Conv((5, 5), 6 => 16, relu) # 2_416 parameters
Then, specify the concepts / features you are interested in. To automatically select the $n$ most relevant features, use TopNFeatures
.
Note that for convolutional layers, a feature corresponds to an entire output channel of the layer.
features = TopNFeatures(5)
TopNFeatures(5)
To manually specify features, use IndexedFeatures
.
features = IndexedFeatures(1, 2, 10)
IndexedFeatures(1, 2, 10)
Step 3: Use CRP analyzer
We can now create a CRP
analyzer and use it like any other analyzer from RelevancePropagation.jl:
using VisionHeatmaps
analyzer = CRP(lrp_analyzer, feature_layer, features)
heatmap(input, analyzer)
Using CRP on input batches
Note that CRP
uses the batch dimension to return explanations. When using CRP on batches, the explanations are first sorted by features, then inputs, e.g. [c1_i1, c1_i2, c2_i1, c2_i2, c3_i1, c3_i2]
in the following example:
x, y = MNIST(Float32, :test)[10:11]
batch = reshape(x, 28, 28, 1, :)
heatmap(batch, analyzer)
This page was generated using Literate.jl.