API Reference
Basic API
All methods in RelevancePropagation.jl work by calling analyze
on an input and an analyzer:
XAIBase.analyze
— Functionanalyze(input, method)
analyze(input, method, output_selection)
Apply the analyzer method
for the given input, returning an Explanation
. If output_selection
is specified, the explanation will be calculated for that output. Otherwise, the output with the highest activation is automatically chosen.
See also Explanation
.
XAIBase.Explanation
— TypeExplanation(val, output, output_selection, analyzer, heatmap, extras)
Return type of analyzers when calling analyze
.
Fields
val
: numerical output of the analyzer, e.g. an attribution or gradientoutput
: model output for the given analyzer inputoutput_selection
: index of the output used for the explanationanalyzer
: symbol corresponding the used analyzer, e.g.:Gradient
or:LRP
heatmap
: symbol indicating a preset heatmapping style, e.g.:attribution
,:sensitivity
or:cam
extras
: optional named tuple that can be used by analyzers to return additional information.
For heatmapping functionality, take a look at either VisionHeatmaps.jl or TextHeatmaps.jl. Both provide heatmap
methods for visualizing explanations, either for images or text, respectively.
LRP analyzer
RelevancePropagation.LRP
— TypeLRP(model, rules)
LRP(model, composite)
Analyze model by applying Layer-Wise Relevance Propagation. The analyzer can either be created by passing an array of LRP-rules or by passing a composite, see Composite
for an example.
Keyword arguments
normalize_output_relevance
: Selects whether output relevance should be set to 1 before applying LRP backward pass. Defaults totrue
to match literature. Iffalse
, values of output activations are used.skip_checks::Bool
: Skip checks whether model is compatible with LRP and contains output softmax. Defaults tofalse
.verbose::Bool
: Select whether the model checks should print a summary on failure. Defaults totrue
.
References
[1] G. Montavon et al., Layer-Wise Relevance Propagation: An Overview [2] W. Samek et al., Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Model preparation
RelevancePropagation.strip_softmax
— Functionstrip_softmax(model)
strip_softmax(layer)
Remove softmax activation on layer or model if it exists.
RelevancePropagation.canonize
— Functioncanonize(model)
Canonize model by flattening it and fusing BatchNorm layers into preceding Dense and Conv layers with linear activation functions.
RelevancePropagation.flatten_model
— Functionflatten_model(model)
Flatten a Flux Chain
containing Chain
s.
LRP rules
Refer to the LRP rule overview for a detailed explanation of the notation used for LRP rules.
RelevancePropagation.ZeroRule
— TypeZeroRule()
LRP-$0$ rule. Commonly used on upper layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i \frac{W_{ij}a_j^k}{\sum_l W_{il}a_l^k+b_i} R_i^{k+1}\]
References
- S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
RelevancePropagation.EpsilonRule
— TypeEpsilonRule([epsilon=1.0e-6])
LRP-$ϵ$ rule. Commonly used on middle layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{W_{ij}a_j^k}{\epsilon +\sum_{l}W_{il}a_l^k+b_i} R_i^{k+1}\]
Optional arguments
epsilon
: Optional stabilization parameter, defaults to1.0e-6
.
References
- S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
RelevancePropagation.GammaRule
— TypeGammaRule([gamma=0.25])
LRP-$γ$ rule. Commonly used on lower layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{(W_{ij}+\gamma W_{ij}^+)a_j^k} {\sum_l(W_{il}+\gamma W_{il}^+)a_l^k+(b_i+\gamma b_i^+)} R_i^{k+1}\]
Optional arguments
gamma
: Optional multiplier for added positive weights, defaults to0.25
.
References
- G. Montavon et al., Layer-Wise Relevance Propagation: An Overview
RelevancePropagation.WSquareRule
— TypeWSquareRule()
LRP-$w²$ rule. Commonly used on the first layer when values are unbounded.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{W_{ij}^2}{\sum_l W_{il}^2} R_i^{k+1}\]
References
- G. Montavon et al., Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition
RelevancePropagation.FlatRule
— TypeFlatRule()
LRP-Flat rule. Similar to the WSquareRule
, but with all weights set to one and all bias terms set to zero.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{1}{\sum_l 1} R_i^{k+1} = \sum_i\frac{1}{n_i} R_i^{k+1}\]
where $n_i$ is the number of input neurons connected to the output neuron at index $i$.
References
- S. Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn
RelevancePropagation.AlphaBetaRule
— TypeAlphaBetaRule([alpha=2.0, beta=1.0])
LRP-$αβ$ rule. Weights positive and negative contributions according to the parameters alpha
and beta
respectively. The difference $α-β$ must be equal to one. Commonly used on lower layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\left( \alpha\frac{\left(W_{ij}a_j^k\right)^+}{\sum_l\left(W_{il}a_l^k+b_i\right)^+} -\beta\frac{\left(W_{ij}a_j^k\right)^-}{\sum_l\left(W_{il}a_l^k+b_i\right)^-} \right) R_i^{k+1}\]
Optional arguments
alpha
: Multiplier for the positive output term, defaults to2.0
.beta
: Multiplier for the negative output term, defaults to1.0
.
References
- S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
- G. Montavon et al., Layer-Wise Relevance Propagation: An Overview
RelevancePropagation.ZPlusRule
— TypeZPlusRule()
LRP-$z⁺$ rule. Commonly used on lower layers.
Equivalent to AlphaBetaRule(1.0f0, 0.0f0)
, but slightly faster. See also AlphaBetaRule
.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{\left(W_{ij}a_j^k\right)^+}{\sum_l\left(W_{il}a_l^k+b_i\right)^+} R_i^{k+1}\]
References
- S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
- G. Montavon et al., Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition
RelevancePropagation.ZBoxRule
— TypeZBoxRule(low, high)
LRP-$zᴮ$-rule. Commonly used on the first layer for pixel input.
The parameters low
and high
should be set to the lower and upper bounds of the input features, e.g. 0.0
and 1.0
for raw image data. It is also possible to provide two arrays of that match the input size.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k=\sum_i \frac{W_{ij}a_j^k - W_{ij}^{+}l_j - W_{ij}^{-}h_j} {\sum_l W_{il}a_l^k+b_i - \left(W_{il}^{+}l_l+b_i^{+}\right) - \left(W_{il}^{-}h_l+b_i^{-}\right)} R_i^{k+1}\]
References
- G. Montavon et al., Layer-Wise Relevance Propagation: An Overview
RelevancePropagation.PassRule
— TypePassRule()
Pass-through rule. Passes relevance through to the lower layer.
Supports layers with constant input and output shapes, e.g. reshaping layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = R_j^{k+1}\]
RelevancePropagation.GeneralizedGammaRule
— TypeGeneralizedGammaRule([gamma=0.25])
Generalized LRP-$γ$ rule. Can be used on layers with leakyrelu
activation functions.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac {(W_{ij}+\gamma W_{ij}^+)a_j^+ +(W_{ij}+\gamma W_{ij}^-)a_j^-} {\sum_l(W_{il}+\gamma W_{il}^+)a_j^+ +(W_{il}+\gamma W_{il}^-)a_j^- +(b_i+\gamma b_i^+)} I(z_k>0) \cdot R^{k+1}_i +\sum_i\frac {(W_{ij}+\gamma W_{ij}^-)a_j^+ +(W_{ij}+\gamma W_{ij}^+)a_j^-} {\sum_l(W_{il}+\gamma W_{il}^-)a_j^+ +(W_{il}+\gamma W_{il}^+)a_j^- +(b_i+\gamma b_i^-)} I(z_k<0) \cdot R^{k+1}_i\]
Optional arguments
gamma
: Optional multiplier for added positive weights, defaults to0.25
.
References
- L. Andéol et al., Learning Domain Invariant Representations by Joint Wasserstein Distance Minimization
RelevancePropagation.LayerNormRule
— TypeLayerNormRule()
LRP-LN rule. Used on LayerNorm
layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_i^k = \sum_j\frac{a_i^k\left(\delta_{ij} - 1/N\right)}{\sum_l a_l^k\left(\delta_{lj}-1/N\right)} R_j^{k+1}\]
Relevance through the affine transformation is by default propagated using the ZeroRule
.
If you would like to assign a special rule to the affine transformation inside of the LayerNorm
layer, call canonize
on your model. This will split the LayerNorm
layer into
- a
LayerNorm
layer without affine transformation - a
Scale
layer implementing the affine transformation
You can then assign separate rules to these two layers.
References
- A. Ali et al., XAI for Transformers: Better Explanations through Conservative Propagation
Composites
Applying composites
RelevancePropagation.Composite
— TypeComposite(primitives...)
Composite(default_rule, primitives...)
Automatically contructs a list of LRP-rules by sequentially applying composite primitives.
Primitives
To apply a single rule, use:
LayerMap
to apply a rule to then
-th layer of a modelGlobalMap
to apply a rule to all layersRangeMap
to apply a rule to a positional range of layersFirstLayerMap
to apply a rule to the first layerLastLayerMap
to apply a rule to the last layer
To apply a set of rules to layers based on their type, use:
GlobalTypeMap
to apply a dictionary that maps layer types to LRP-rulesRangeTypeMap
for aTypeMap
on generalized rangesFirstLayerTypeMap
for aTypeMap
on the first layer of a modelLastLayerTypeMap
for aTypeMap
on the last layerFirstNTypeMap
for aTypeMap
on the firstn
layers
Example
Using a VGG11 model:
julia> composite = Composite(
GlobalTypeMap(
ConvLayer => AlphaBetaRule(),
Dense => EpsilonRule(),
PoolingLayer => EpsilonRule(),
DropoutLayer => PassRule(),
ReshapingLayer => PassRule(),
),
FirstNTypeMap(7, Conv => FlatRule()),
);
julia> analyzer = LRP(model, composite)
LRP(
Conv((3, 3), 3 => 64, relu, pad=1) => FlatRule(),
MaxPool((2, 2)) => EpsilonRule{Float32}(1.0f-6),
Conv((3, 3), 64 => 128, relu, pad=1) => FlatRule(),
MaxPool((2, 2)) => EpsilonRule{Float32}(1.0f-6),
Conv((3, 3), 128 => 256, relu, pad=1) => FlatRule(),
Conv((3, 3), 256 => 256, relu, pad=1) => FlatRule(),
MaxPool((2, 2)) => EpsilonRule{Float32}(1.0f-6),
Conv((3, 3), 256 => 512, relu, pad=1) => AlphaBetaRule{Float32}(2.0f0, 1.0f0),
Conv((3, 3), 512 => 512, relu, pad=1) => AlphaBetaRule{Float32}(2.0f0, 1.0f0),
MaxPool((2, 2)) => EpsilonRule{Float32}(1.0f-6),
Conv((3, 3), 512 => 512, relu, pad=1) => AlphaBetaRule{Float32}(2.0f0, 1.0f0),
Conv((3, 3), 512 => 512, relu, pad=1) => AlphaBetaRule{Float32}(2.0f0, 1.0f0),
MaxPool((2, 2)) => EpsilonRule{Float32}(1.0f-6),
MLUtils.flatten => PassRule(),
Dense(25088 => 4096, relu) => EpsilonRule{Float32}(1.0f-6),
Dropout(0.5) => PassRule(),
Dense(4096 => 4096, relu) => EpsilonRule{Float32}(1.0f-6),
Dropout(0.5) => PassRule(),
Dense(4096 => 1000) => EpsilonRule{Float32}(1.0f-6),
)
RelevancePropagation.lrp_rules
— Functionlrp_rules(model, composite)
Apply a composite to obtain LRP-rules for a given Flux model.
Composite primitives
Mapping layers to rules
Composite primitives that apply a single rule:
RelevancePropagation.LayerMap
— TypeLayerMap(index, rule)
Composite primitive that maps an LRP-rule to all layers in the model at the given index. The index can either be an integer or a tuple of integers to map a rule to a specific layer in nested Flux Chain
s.
See show_layer_indices
to print layer indices and Composite
for an example.
RelevancePropagation.GlobalMap
— TypeGlobalMap(rule)
Composite primitive that maps an LRP-rule to all layers in the model.
See Composite
for an example.
RelevancePropagation.RangeMap
— TypeRangeMap(range, rule)
Composite primitive that maps an LRP-rule to the specified positional range
of layers in the model.
See Composite
for an example.
RelevancePropagation.FirstLayerMap
— TypeFirstLayerMap(rule)
Composite primitive that maps an LRP-rule to the first layer in the model.
See Composite
for an example.
RelevancePropagation.LastLayerMap
— TypeLastLayerMap(rule)
Composite primitive that maps an LRP-rule to the last layer in the model.
See Composite
for an example.
To apply LayerMap
to nested Flux Chains or Parallel
layers, make use of show_layer_indices
:
RelevancePropagation.show_layer_indices
— Functionshow_layer_indices(model)
Print layer indices of Flux models. This is primarily a utility to help define LayerMap
primitives.
Mapping layers to rules based on type
Composite primitives that apply rules based on the layer type:
RelevancePropagation.GlobalTypeMap
— TypeGlobalTypeMap(map)
Composite primitive that maps layer types to LRP rules based on a list of type-rule-pairs map
.
See Composite
for an example.
RelevancePropagation.RangeTypeMap
— TypeRangeTypeMap(range, map)
Composite primitive that maps layer types to LRP rules based on a list of type-rule-pairs map
within the specified range
of layers in the model.
See Composite
for an example.
RelevancePropagation.FirstLayerTypeMap
— TypeFirstLayerTypeMap(map)
Composite primitive that maps the type of the first layer of the model to LRP rules based on a list of type-rule-pairs map
.
See Composite
for an example.
RelevancePropagation.LastLayerTypeMap
— TypeLastLayerTypeMap(map)
Composite primitive that maps the type of the last layer of the model to LRP rules based on a list of type-rule-pairs map
.
See Composite
for an example.
RelevancePropagation.FirstNTypeMap
— TypeFirstNTypeMap(n, map)
Composite primitive that maps layer types to LRP rules based on a list of type-rule-pairs map
within the first n
layers in the model.
See Composite
for an example.
Union types for composites
The following exported union types types can be used to define TypeMaps:
RelevancePropagation.ConvLayer
— TypeUnion type for convolutional layers.
RelevancePropagation.PoolingLayer
— TypeUnion type for pooling layers.
RelevancePropagation.DropoutLayer
— TypeUnion type for dropout layers.
RelevancePropagation.ReshapingLayer
— TypeUnion type for reshaping layers such as flatten
.
RelevancePropagation.NormalizationLayer
— TypeUnion type for normalization layers.
Composite presets
RelevancePropagation.EpsilonGammaBox
— FunctionEpsilonGammaBox(low, high; [epsilon=1.0f-6, gamma=0.25f0])
Composite using the following primitives:
julia> EpsilonGammaBox(-3.0f0, 3.0f0)
Composite(
GlobalTypeMap( # all layers
Flux.Conv => RelevancePropagation.GammaRule{Float32}(0.25f0),
Flux.ConvTranspose => RelevancePropagation.GammaRule{Float32}(0.25f0),
Flux.CrossCor => RelevancePropagation.GammaRule{Float32}(0.25f0),
Flux.Dense => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.Scale => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.LayerNorm => RelevancePropagation.LayerNormRule(),
typeof(NNlib.dropout) => RelevancePropagation.PassRule(),
Flux.AlphaDropout => RelevancePropagation.PassRule(),
Flux.Dropout => RelevancePropagation.PassRule(),
Flux.BatchNorm => RelevancePropagation.PassRule(),
typeof(Flux.flatten) => RelevancePropagation.PassRule(),
typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
typeof(identity) => RelevancePropagation.PassRule(),
),
FirstLayerTypeMap( # first layer
Flux.Conv => RelevancePropagation.ZBoxRule{Float32}(-3.0f0, 3.0f0),
Flux.ConvTranspose => RelevancePropagation.ZBoxRule{Float32}(-3.0f0, 3.0f0),
Flux.CrossCor => RelevancePropagation.ZBoxRule{Float32}(-3.0f0, 3.0f0),
),
)
RelevancePropagation.EpsilonPlus
— FunctionEpsilonPlus(; [epsilon=1.0f-6])
Composite using the following primitives:
julia> EpsilonPlus()
Composite(
GlobalTypeMap( # all layers
Flux.Conv => RelevancePropagation.ZPlusRule(),
Flux.ConvTranspose => RelevancePropagation.ZPlusRule(),
Flux.CrossCor => RelevancePropagation.ZPlusRule(),
Flux.Dense => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.Scale => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.LayerNorm => RelevancePropagation.LayerNormRule(),
typeof(NNlib.dropout) => RelevancePropagation.PassRule(),
Flux.AlphaDropout => RelevancePropagation.PassRule(),
Flux.Dropout => RelevancePropagation.PassRule(),
Flux.BatchNorm => RelevancePropagation.PassRule(),
typeof(Flux.flatten) => RelevancePropagation.PassRule(),
typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
typeof(identity) => RelevancePropagation.PassRule(),
),
)
RelevancePropagation.EpsilonAlpha2Beta1
— FunctionEpsilonAlpha2Beta1(; [epsilon=1.0f-6])
Composite using the following primitives:
julia> EpsilonAlpha2Beta1()
Composite(
GlobalTypeMap( # all layers
Flux.Conv => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
Flux.ConvTranspose => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
Flux.CrossCor => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
Flux.Dense => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.Scale => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.LayerNorm => RelevancePropagation.LayerNormRule(),
typeof(NNlib.dropout) => RelevancePropagation.PassRule(),
Flux.AlphaDropout => RelevancePropagation.PassRule(),
Flux.Dropout => RelevancePropagation.PassRule(),
Flux.BatchNorm => RelevancePropagation.PassRule(),
typeof(Flux.flatten) => RelevancePropagation.PassRule(),
typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
typeof(identity) => RelevancePropagation.PassRule(),
),
)
RelevancePropagation.EpsilonPlusFlat
— FunctionEpsilonPlusFlat(; [epsilon=1.0f-6])
Composite using the following primitives:
julia> EpsilonPlusFlat()
Composite(
GlobalTypeMap( # all layers
Flux.Conv => RelevancePropagation.ZPlusRule(),
Flux.ConvTranspose => RelevancePropagation.ZPlusRule(),
Flux.CrossCor => RelevancePropagation.ZPlusRule(),
Flux.Dense => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.Scale => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.LayerNorm => RelevancePropagation.LayerNormRule(),
typeof(NNlib.dropout) => RelevancePropagation.PassRule(),
Flux.AlphaDropout => RelevancePropagation.PassRule(),
Flux.Dropout => RelevancePropagation.PassRule(),
Flux.BatchNorm => RelevancePropagation.PassRule(),
typeof(Flux.flatten) => RelevancePropagation.PassRule(),
typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
typeof(identity) => RelevancePropagation.PassRule(),
),
FirstLayerTypeMap( # first layer
Flux.Conv => RelevancePropagation.FlatRule(),
Flux.ConvTranspose => RelevancePropagation.FlatRule(),
Flux.CrossCor => RelevancePropagation.FlatRule(),
),
)
RelevancePropagation.EpsilonAlpha2Beta1Flat
— FunctionEpsilonAlpha2Beta1Flat(; [epsilon=1.0f-6])
Composite using the following primitives:
julia> EpsilonAlpha2Beta1Flat()
Composite(
GlobalTypeMap( # all layers
Flux.Conv => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
Flux.ConvTranspose => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
Flux.CrossCor => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
Flux.Dense => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.Scale => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
Flux.LayerNorm => RelevancePropagation.LayerNormRule(),
typeof(NNlib.dropout) => RelevancePropagation.PassRule(),
Flux.AlphaDropout => RelevancePropagation.PassRule(),
Flux.Dropout => RelevancePropagation.PassRule(),
Flux.BatchNorm => RelevancePropagation.PassRule(),
typeof(Flux.flatten) => RelevancePropagation.PassRule(),
typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
typeof(identity) => RelevancePropagation.PassRule(),
),
FirstLayerTypeMap( # first layer
Flux.Conv => RelevancePropagation.FlatRule(),
Flux.ConvTranspose => RelevancePropagation.FlatRule(),
Flux.CrossCor => RelevancePropagation.FlatRule(),
),
)
Manual rule assignment
For manual rule assignment, use ChainTuple
, ParallelTuple
and SkipConnectionTuple
, matching the model structure:
RelevancePropagation.ChainTuple
— TypeChainTuple(xs)
Thin wrapper around Tuple
for use with Flux.jl models.
Combining ChainTuple
, ParallelTuple
and SkipConnectionTuple
, data xs
can be stored while preserving the structure of a Flux model without risking type piracy.
RelevancePropagation.ParallelTuple
— TypeParallelTuple(xs)
Thin wrapper around Tuple
for use with Flux.jl models.
Combining ChainTuple
, ParallelTuple
and SkipConnectionTuple
, data xs
can be stored while preserving the structure of a Flux model without risking type piracy.
RelevancePropagation.SkipConnectionTuple
— TypeSkipConnectionTuple(xs)
Thin wrapper around Tuple
for use with Flux.jl models.
Combining ChainTuple
, ParallelTuple
and SkipConnectionTuple
, data xs
can be stored while preserving the structure of a Flux model without risking type piracy.
Custom rules
These utilities can be used to define custom rules without writing boilerplate code. To extend these functions, explicitly import
them:
RelevancePropagation.modify_input
— Functionmodify_input(rule, input)
Modify input activation before computing relevance propagation.
RelevancePropagation.modify_denominator
— Functionmodify_denominator(rule, d)
Modify denominator $z$ for numerical stability on the forward pass.
RelevancePropagation.modify_parameters
— Functionmodify_parameters(rule, parameter)
Modify parameters before computing the relevance.
Note
Use of a custom function modify_layer
will overwrite functionality of modify_parameters
, modify_weight
and modify_bias
for the implemented combination of rule and layer types. This is due to the fact that internally, modify_weight
and modify_bias
are called by the default implementation of modify_layer
. modify_weight
and modify_bias
in turn call modify_parameters
by default.
The default call structure looks as follows:
┌─────────────────────────────────────────┐
│ modify_layer │
└─────────┬─────────────────────┬─────────┘
│ calls │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_weight │ │ modify_bias │
└─────────┬─────────┘ └─────────┬─────────┘
│ calls │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_parameters │ │ modify_parameters │
└───────────────────┘ └───────────────────┘
RelevancePropagation.modify_weight
— Functionmodify_weight(rule, weight)
Modify layer weights before computing the relevance.
Note
Use of a custom function modify_layer
will overwrite functionality of modify_parameters
, modify_weight
and modify_bias
for the implemented combination of rule and layer types. This is due to the fact that internally, modify_weight
and modify_bias
are called by the default implementation of modify_layer
. modify_weight
and modify_bias
in turn call modify_parameters
by default.
The default call structure looks as follows:
┌─────────────────────────────────────────┐
│ modify_layer │
└─────────┬─────────────────────┬─────────┘
│ calls │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_weight │ │ modify_bias │
└─────────┬─────────┘ └─────────┬─────────┘
│ calls │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_parameters │ │ modify_parameters │
└───────────────────┘ └───────────────────┘
RelevancePropagation.modify_bias
— Functionmodify_bias(rule, bias)
Modify layer bias before computing the relevance.
Note
Use of a custom function modify_layer
will overwrite functionality of modify_parameters
, modify_weight
and modify_bias
for the implemented combination of rule and layer types. This is due to the fact that internally, modify_weight
and modify_bias
are called by the default implementation of modify_layer
. modify_weight
and modify_bias
in turn call modify_parameters
by default.
The default call structure looks as follows:
┌─────────────────────────────────────────┐
│ modify_layer │
└─────────┬─────────────────────┬─────────┘
│ calls │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_weight │ │ modify_bias │
└─────────┬─────────┘ └─────────┬─────────┘
│ calls │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_parameters │ │ modify_parameters │
└───────────────────┘ └───────────────────┘
RelevancePropagation.modify_layer
— Functionmodify_layer(rule, layer)
Modify layer before computing the relevance.
Note
Use of a custom function modify_layer
will overwrite functionality of modify_parameters
, modify_weight
and modify_bias
for the implemented combination of rule and layer types. This is due to the fact that internally, modify_weight
and modify_bias
are called by the default implementation of modify_layer
. modify_weight
and modify_bias
in turn call modify_parameters
by default.
The default call structure looks as follows:
┌─────────────────────────────────────────┐
│ modify_layer │
└─────────┬─────────────────────┬─────────┘
│ calls │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_weight │ │ modify_bias │
└─────────┬─────────┘ └─────────┬─────────┘
│ calls │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_parameters │ │ modify_parameters │
└───────────────────┘ └───────────────────┘
RelevancePropagation.is_compatible
— Functionis_compatible(rule, layer)
Check compatibility of a LRP-Rule with layer type.
Compatibility settings:
RelevancePropagation.LRP_CONFIG.supports_layer
— FunctionLRP_CONFIG.supports_layer(layer)
Check whether LRP can be used on a layer or a Chain. To extend LRP to your own layers, define:
LRP_CONFIG.supports_layer(::MyLayer) = true # for structs
LRP_CONFIG.supports_layer(::typeof(mylayer)) = true # for functions
RelevancePropagation.LRP_CONFIG.supports_activation
— FunctionLRP_CONFIG.supports_activation(σ)
Check whether LRP can be used on a given activation function. To extend LRP to your own activation functions, define:
LRP_CONFIG.supports_activation(::typeof(myactivation)) = true # for functions
LRP_CONFIG.supports_activation(::MyActivation) = true # for structs
CRP
RelevancePropagation.CRP
— TypeCRP(lrp_analyzer, layer, features)
Use Concept Relevance Propagation to explain the output of a neural network with respect to specific features in a given layer.
Arguments
lrp_analyzer::LRP
: LRP analyzerlayer::Int
: Index of layer after which the concept is locatedfeatures
: Concept / feature to explain.
See also TopNFeatures
and IndexedFeatures
.
References
[1] R. Achtibat et al., From attribution maps to human-understandable explanations through Concept Relevance Propagation
XAIBase.TopNFeatures
— TypeTopNFeatures(n)
Select top-n features.
For outputs of convolutional layers, the relevance is summed across height and width channels for each feature.
See also IndexedFeatures
.
Note
The XAIBase interface currently assumes that features have either 2 or 4 dimensions ((features, batchsize)
or (width, height, features, batchsize)
).
It also assumes that the batch dimension is the last dimension of the feature.
Example
julia> feature_selector = TopNFeatures(2)
TopNFeatures(2)
julia> feature = rand(3, 2)
3×2 Matrix{Float64}:
0.265312 0.953689
0.674377 0.172154
0.649722 0.570809
julia> feature_selector(feature)
2-element Vector{Vector{CartesianIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}}}:
[CartesianIndices((2:2, 1:1)), CartesianIndices((1:1, 2:2))]
[CartesianIndices((3:3, 1:1)), CartesianIndices((3:3, 2:2))]
julia> feature = rand(3, 3, 3, 2);
julia> feature_selector(feature)
2-element Vector{Vector{CartesianIndices{4, NTuple{4, UnitRange{Int64}}}}}:
[CartesianIndices((1:3, 1:3, 2:2, 1:1)), CartesianIndices((1:3, 1:3, 1:1, 2:2))]
[CartesianIndices((1:3, 1:3, 1:1, 1:1)), CartesianIndices((1:3, 1:3, 3:3, 2:2))]
XAIBase.IndexedFeatures
— TypeIndexedFeatures(indices...)
Select features by indices.
For outputs of convolutional layers, the index refers to a feature dimension.
See also See also TopNFeatures
.
Note
The XAIBase interface currently assumes that features have either 2 or 4 dimensions ((features, batchsize)
or (width, height, features, batchsize)
).
It also assumes that the batch dimension is the last dimension of the feature.
Example
julia> feature_selector = IndexedFeatures(2, 3)
IndexedFeatures(2, 3)
julia> feature = rand(3, 3, 3, 2);
julia> feature_selector(feature)
2-element Vector{Vector{CartesianIndices{4, NTuple{4, UnitRange{Int64}}}}}:
[CartesianIndices((1:3, 1:3, 2:2, 1:1)), CartesianIndices((1:3, 1:3, 2:2, 2:2))]
[CartesianIndices((1:3, 1:3, 3:3, 1:1)), CartesianIndices((1:3, 1:3, 3:3, 2:2))]
julia> feature = rand(3, 2);
julia> feature_selector(feature)
1-element Vector{Vector{CartesianIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}}}:
[CartesianIndices((2:2, 1:1)), CartesianIndices((2:2, 2:2))]
Index
RelevancePropagation.AlphaBetaRule
RelevancePropagation.CRP
RelevancePropagation.ChainTuple
RelevancePropagation.Composite
RelevancePropagation.ConvLayer
RelevancePropagation.DropoutLayer
RelevancePropagation.EpsilonRule
RelevancePropagation.FirstLayerMap
RelevancePropagation.FirstLayerTypeMap
RelevancePropagation.FirstNTypeMap
RelevancePropagation.FlatRule
RelevancePropagation.GammaRule
RelevancePropagation.GeneralizedGammaRule
RelevancePropagation.GlobalMap
RelevancePropagation.GlobalTypeMap
RelevancePropagation.LRP
RelevancePropagation.LastLayerMap
RelevancePropagation.LastLayerTypeMap
RelevancePropagation.LayerMap
RelevancePropagation.LayerNormRule
RelevancePropagation.NormalizationLayer
RelevancePropagation.ParallelTuple
RelevancePropagation.PassRule
RelevancePropagation.PoolingLayer
RelevancePropagation.RangeMap
RelevancePropagation.RangeTypeMap
RelevancePropagation.ReshapingLayer
RelevancePropagation.SkipConnectionTuple
RelevancePropagation.WSquareRule
RelevancePropagation.ZBoxRule
RelevancePropagation.ZPlusRule
RelevancePropagation.ZeroRule
XAIBase.Explanation
XAIBase.IndexedFeatures
XAIBase.TopNFeatures
RelevancePropagation.EpsilonAlpha2Beta1
RelevancePropagation.EpsilonAlpha2Beta1Flat
RelevancePropagation.EpsilonGammaBox
RelevancePropagation.EpsilonPlus
RelevancePropagation.EpsilonPlusFlat
RelevancePropagation.LRP_CONFIG.supports_activation
RelevancePropagation.LRP_CONFIG.supports_layer
RelevancePropagation.canonize
RelevancePropagation.flatten_model
RelevancePropagation.is_compatible
RelevancePropagation.lrp_rules
RelevancePropagation.modify_bias
RelevancePropagation.modify_denominator
RelevancePropagation.modify_input
RelevancePropagation.modify_layer
RelevancePropagation.modify_parameters
RelevancePropagation.modify_weight
RelevancePropagation.show_layer_indices
RelevancePropagation.strip_softmax
XAIBase.analyze