API Reference

Basic API

All methods in RelevancePropagation.jl work by calling analyze on an input and an analyzer:

XAIBase.analyzeFunction
analyze(input, method)
analyze(input, method, output_selection)

Apply the analyzer method for the given input, returning an Explanation. If output_selection is specified, the explanation will be calculated for that output. Otherwise, the output with the highest activation is automatically chosen.

See also Explanation.

source
XAIBase.ExplanationType
Explanation(val, output, output_selection, analyzer, heatmap, extras)

Return type of analyzers when calling analyze.

Fields

  • val: numerical output of the analyzer, e.g. an attribution or gradient
  • output: model output for the given analyzer input
  • output_selection: index of the output used for the explanation
  • analyzer: symbol corresponding the used analyzer, e.g. :Gradient or :LRP
  • heatmap: symbol indicating a preset heatmapping style, e.g. :attribution, :sensitivity or :cam
  • extras: optional named tuple that can be used by analyzers to return additional information.
source

For heatmapping functionality, take a look at either VisionHeatmaps.jl or TextHeatmaps.jl. Both provide heatmap methods for visualizing explanations, either for images or text, respectively.

LRP analyzer

RelevancePropagation.LRPType
LRP(model, rules)
LRP(model, composite)

Analyze model by applying Layer-Wise Relevance Propagation. The analyzer can either be created by passing an array of LRP-rules or by passing a composite, see Composite for an example.

Keyword arguments

  • normalize_output_relevance: Selects whether output relevance should be set to 1 before applying LRP backward pass. Defaults to true to match literature. If false, values of output activations are used.
  • skip_checks::Bool: Skip checks whether model is compatible with LRP and contains output softmax. Defaults to false.
  • verbose::Bool: Select whether the model checks should print a summary on failure. Defaults to true.

References

[1] G. Montavon et al., Layer-Wise Relevance Propagation: An Overview [2] W. Samek et al., Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications

source

Model preparation

RelevancePropagation.canonizeFunction
canonize(model)

Canonize model by flattening it and fusing BatchNorm layers into preceding Dense and Conv layers with linear activation functions.

source

LRP rules

Refer to the LRP rule overview for a detailed explanation of the notation used for LRP rules.

RelevancePropagation.ZeroRuleType
ZeroRule()

LRP-$0$ rule. Commonly used on upper layers.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k = \sum_i \frac{W_{ij}a_j^k}{\sum_l W_{il}a_l^k+b_i} R_i^{k+1}\]

References

  • S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
source
RelevancePropagation.EpsilonRuleType
EpsilonRule([epsilon=1.0e-6])

LRP-$ϵ$ rule. Commonly used on middle layers.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k = \sum_i\frac{W_{ij}a_j^k}{\epsilon +\sum_{l}W_{il}a_l^k+b_i} R_i^{k+1}\]

Optional arguments

  • epsilon: Optional stabilization parameter, defaults to 1.0e-6.

References

  • S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
source
RelevancePropagation.GammaRuleType
GammaRule([gamma=0.25])

LRP-$γ$ rule. Commonly used on lower layers.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k = \sum_i\frac{(W_{ij}+\gamma W_{ij}^+)a_j^k} {\sum_l(W_{il}+\gamma W_{il}^+)a_l^k+(b_i+\gamma b_i^+)} R_i^{k+1}\]

Optional arguments

  • gamma: Optional multiplier for added positive weights, defaults to 0.25.

References

  • G. Montavon et al., Layer-Wise Relevance Propagation: An Overview
source
RelevancePropagation.WSquareRuleType
WSquareRule()

LRP-$w²$ rule. Commonly used on the first layer when values are unbounded.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k = \sum_i\frac{W_{ij}^2}{\sum_l W_{il}^2} R_i^{k+1}\]

References

  • G. Montavon et al., Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition
source
RelevancePropagation.FlatRuleType
FlatRule()

LRP-Flat rule. Similar to the WSquareRule, but with all weights set to one and all bias terms set to zero.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k = \sum_i\frac{1}{\sum_l 1} R_i^{k+1} = \sum_i\frac{1}{n_i} R_i^{k+1}\]

where $n_i$ is the number of input neurons connected to the output neuron at index $i$.

References

  • S. Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn
source
RelevancePropagation.AlphaBetaRuleType
AlphaBetaRule([alpha=2.0, beta=1.0])

LRP-$αβ$ rule. Weights positive and negative contributions according to the parameters alpha and beta respectively. The difference $α-β$ must be equal to one. Commonly used on lower layers.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k = \sum_i\left( \alpha\frac{\left(W_{ij}a_j^k\right)^+}{\sum_l\left(W_{il}a_l^k+b_i\right)^+} -\beta\frac{\left(W_{ij}a_j^k\right)^-}{\sum_l\left(W_{il}a_l^k+b_i\right)^-} \right) R_i^{k+1}\]

Optional arguments

  • alpha: Multiplier for the positive output term, defaults to 2.0.
  • beta: Multiplier for the negative output term, defaults to 1.0.

References

  • S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
  • G. Montavon et al., Layer-Wise Relevance Propagation: An Overview
source
RelevancePropagation.ZPlusRuleType
ZPlusRule()

LRP-$z⁺$ rule. Commonly used on lower layers.

Equivalent to AlphaBetaRule(1.0f0, 0.0f0), but slightly faster. See also AlphaBetaRule.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k = \sum_i\frac{\left(W_{ij}a_j^k\right)^+}{\sum_l\left(W_{il}a_l^k+b_i\right)^+} R_i^{k+1}\]

References

  • S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
  • G. Montavon et al., Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition
source
RelevancePropagation.ZBoxRuleType
ZBoxRule(low, high)

LRP-$zᴮ$-rule. Commonly used on the first layer for pixel input.

The parameters low and high should be set to the lower and upper bounds of the input features, e.g. 0.0 and 1.0 for raw image data. It is also possible to provide two arrays of that match the input size.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k=\sum_i \frac{W_{ij}a_j^k - W_{ij}^{+}l_j - W_{ij}^{-}h_j} {\sum_l W_{il}a_l^k+b_i - \left(W_{il}^{+}l_l+b_i^{+}\right) - \left(W_{il}^{-}h_l+b_i^{-}\right)} R_i^{k+1}\]

References

  • G. Montavon et al., Layer-Wise Relevance Propagation: An Overview
source
RelevancePropagation.PassRuleType
PassRule()

Pass-through rule. Passes relevance through to the lower layer.

Supports layers with constant input and output shapes, e.g. reshaping layers.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k = R_j^{k+1}\]

source
RelevancePropagation.GeneralizedGammaRuleType
GeneralizedGammaRule([gamma=0.25])

Generalized LRP-$γ$ rule. Can be used on layers with leakyrelu activation functions.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_j^k = \sum_i\frac {(W_{ij}+\gamma W_{ij}^+)a_j^+ +(W_{ij}+\gamma W_{ij}^-)a_j^-} {\sum_l(W_{il}+\gamma W_{il}^+)a_j^+ +(W_{il}+\gamma W_{il}^-)a_j^- +(b_i+\gamma b_i^+)} I(z_k>0) \cdot R^{k+1}_i +\sum_i\frac {(W_{ij}+\gamma W_{ij}^-)a_j^+ +(W_{ij}+\gamma W_{ij}^+)a_j^-} {\sum_l(W_{il}+\gamma W_{il}^-)a_j^+ +(W_{il}+\gamma W_{il}^+)a_j^- +(b_i+\gamma b_i^-)} I(z_k<0) \cdot R^{k+1}_i\]

Optional arguments

  • gamma: Optional multiplier for added positive weights, defaults to 0.25.

References

  • L. Andéol et al., Learning Domain Invariant Representations by Joint Wasserstein Distance Minimization
source
RelevancePropagation.LayerNormRuleType
LayerNormRule()

LRP-LN rule. Used on LayerNorm layers.

Definition

Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to

\[R_i^k = \sum_j\frac{a_i^k\left(\delta_{ij} - 1/N\right)}{\sum_l a_l^k\left(\delta_{lj}-1/N\right)} R_j^{k+1}\]

Relevance through the affine transformation is by default propagated using the ZeroRule.

If you would like to assign a special rule to the affine transformation inside of the LayerNorm layer, call canonize on your model. This will split the LayerNorm layer into

  1. a LayerNorm layer without affine transformation
  2. a Scale layer implementing the affine transformation

You can then assign separate rules to these two layers.

References

  • A. Ali et al., XAI for Transformers: Better Explanations through Conservative Propagation
source

Composites

Applying composites

RelevancePropagation.CompositeType
Composite(primitives...)
Composite(default_rule, primitives...)

Automatically contructs a list of LRP-rules by sequentially applying composite primitives.

Primitives

To apply a single rule, use:

To apply a set of rules to layers based on their type, use:

Example

Using a VGG11 model:

julia> composite = Composite(
           GlobalTypeMap(
               ConvLayer => AlphaBetaRule(),
               Dense => EpsilonRule(),
               PoolingLayer => EpsilonRule(),
               DropoutLayer => PassRule(),
               ReshapingLayer => PassRule(),
           ),
           FirstNTypeMap(7, Conv => FlatRule()),
       );

julia> analyzer = LRP(model, composite)
LRP(
  Conv((3, 3), 3 => 64, relu, pad=1)    => FlatRule(),
  MaxPool((2, 2))                       => EpsilonRule{Float32}(1.0f-6),
  Conv((3, 3), 64 => 128, relu, pad=1)  => FlatRule(),
  MaxPool((2, 2))                       => EpsilonRule{Float32}(1.0f-6),
  Conv((3, 3), 128 => 256, relu, pad=1) => FlatRule(),
  Conv((3, 3), 256 => 256, relu, pad=1) => FlatRule(),
  MaxPool((2, 2))                       => EpsilonRule{Float32}(1.0f-6),
  Conv((3, 3), 256 => 512, relu, pad=1) => AlphaBetaRule{Float32}(2.0f0, 1.0f0),
  Conv((3, 3), 512 => 512, relu, pad=1) => AlphaBetaRule{Float32}(2.0f0, 1.0f0),
  MaxPool((2, 2))                       => EpsilonRule{Float32}(1.0f-6),
  Conv((3, 3), 512 => 512, relu, pad=1) => AlphaBetaRule{Float32}(2.0f0, 1.0f0),
  Conv((3, 3), 512 => 512, relu, pad=1) => AlphaBetaRule{Float32}(2.0f0, 1.0f0),
  MaxPool((2, 2))                       => EpsilonRule{Float32}(1.0f-6),
  MLUtils.flatten                       => PassRule(),
  Dense(25088 => 4096, relu)            => EpsilonRule{Float32}(1.0f-6),
  Dropout(0.5)                          => PassRule(),
  Dense(4096 => 4096, relu)             => EpsilonRule{Float32}(1.0f-6),
  Dropout(0.5)                          => PassRule(),
  Dense(4096 => 1000)                   => EpsilonRule{Float32}(1.0f-6),
)
source

Composite primitives

Mapping layers to rules

Composite primitives that apply a single rule:

RelevancePropagation.LayerMapType
LayerMap(index, rule)

Composite primitive that maps an LRP-rule to all layers in the model at the given index. The index can either be an integer or a tuple of integers to map a rule to a specific layer in nested Flux Chains.

See show_layer_indices to print layer indices and Composite for an example.

source

To apply LayerMap to nested Flux Chains or Parallel layers, make use of show_layer_indices:

Mapping layers to rules based on type

Composite primitives that apply rules based on the layer type:

RelevancePropagation.RangeTypeMapType
RangeTypeMap(range, map)

Composite primitive that maps layer types to LRP rules based on a list of type-rule-pairs map within the specified range of layers in the model.

See Composite for an example.

source

Union types for composites

The following exported union types types can be used to define TypeMaps:

Composite presets

RelevancePropagation.EpsilonGammaBoxFunction
EpsilonGammaBox(low, high; [epsilon=1.0f-6, gamma=0.25f0])

Composite using the following primitives:

julia> EpsilonGammaBox(-3.0f0, 3.0f0)
Composite(
  GlobalTypeMap(  # all layers
    Flux.Conv               => RelevancePropagation.GammaRule{Float32}(0.25f0),
    Flux.ConvTranspose      => RelevancePropagation.GammaRule{Float32}(0.25f0),
    Flux.CrossCor           => RelevancePropagation.GammaRule{Float32}(0.25f0),
    Flux.Dense              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.Scale              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.LayerNorm          => RelevancePropagation.LayerNormRule(),
    typeof(NNlib.dropout)   => RelevancePropagation.PassRule(),
    Flux.AlphaDropout       => RelevancePropagation.PassRule(),
    Flux.Dropout            => RelevancePropagation.PassRule(),
    Flux.BatchNorm          => RelevancePropagation.PassRule(),
    typeof(Flux.flatten)    => RelevancePropagation.PassRule(),
    typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
    typeof(identity)        => RelevancePropagation.PassRule(),
 ),
  FirstLayerTypeMap(  # first layer
    Flux.Conv          => RelevancePropagation.ZBoxRule{Float32}(-3.0f0, 3.0f0),
    Flux.ConvTranspose => RelevancePropagation.ZBoxRule{Float32}(-3.0f0, 3.0f0),
    Flux.CrossCor      => RelevancePropagation.ZBoxRule{Float32}(-3.0f0, 3.0f0),
 ),
)
source
RelevancePropagation.EpsilonPlusFunction
EpsilonPlus(; [epsilon=1.0f-6])

Composite using the following primitives:

julia> EpsilonPlus()
Composite(
  GlobalTypeMap(  # all layers
    Flux.Conv               => RelevancePropagation.ZPlusRule(),
    Flux.ConvTranspose      => RelevancePropagation.ZPlusRule(),
    Flux.CrossCor           => RelevancePropagation.ZPlusRule(),
    Flux.Dense              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.Scale              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.LayerNorm          => RelevancePropagation.LayerNormRule(),
    typeof(NNlib.dropout)   => RelevancePropagation.PassRule(),
    Flux.AlphaDropout       => RelevancePropagation.PassRule(),
    Flux.Dropout            => RelevancePropagation.PassRule(),
    Flux.BatchNorm          => RelevancePropagation.PassRule(),
    typeof(Flux.flatten)    => RelevancePropagation.PassRule(),
    typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
    typeof(identity)        => RelevancePropagation.PassRule(),
 ),
)
source
RelevancePropagation.EpsilonAlpha2Beta1Function
EpsilonAlpha2Beta1(; [epsilon=1.0f-6])

Composite using the following primitives:

julia> EpsilonAlpha2Beta1()
Composite(
  GlobalTypeMap(  # all layers
    Flux.Conv               => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
    Flux.ConvTranspose      => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
    Flux.CrossCor           => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
    Flux.Dense              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.Scale              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.LayerNorm          => RelevancePropagation.LayerNormRule(),
    typeof(NNlib.dropout)   => RelevancePropagation.PassRule(),
    Flux.AlphaDropout       => RelevancePropagation.PassRule(),
    Flux.Dropout            => RelevancePropagation.PassRule(),
    Flux.BatchNorm          => RelevancePropagation.PassRule(),
    typeof(Flux.flatten)    => RelevancePropagation.PassRule(),
    typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
    typeof(identity)        => RelevancePropagation.PassRule(),
 ),
)
source
RelevancePropagation.EpsilonPlusFlatFunction
EpsilonPlusFlat(; [epsilon=1.0f-6])

Composite using the following primitives:

julia> EpsilonPlusFlat()
Composite(
  GlobalTypeMap(  # all layers
    Flux.Conv               => RelevancePropagation.ZPlusRule(),
    Flux.ConvTranspose      => RelevancePropagation.ZPlusRule(),
    Flux.CrossCor           => RelevancePropagation.ZPlusRule(),
    Flux.Dense              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.Scale              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.LayerNorm          => RelevancePropagation.LayerNormRule(),
    typeof(NNlib.dropout)   => RelevancePropagation.PassRule(),
    Flux.AlphaDropout       => RelevancePropagation.PassRule(),
    Flux.Dropout            => RelevancePropagation.PassRule(),
    Flux.BatchNorm          => RelevancePropagation.PassRule(),
    typeof(Flux.flatten)    => RelevancePropagation.PassRule(),
    typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
    typeof(identity)        => RelevancePropagation.PassRule(),
 ),
  FirstLayerTypeMap(  # first layer
    Flux.Conv          => RelevancePropagation.FlatRule(),
    Flux.ConvTranspose => RelevancePropagation.FlatRule(),
    Flux.CrossCor      => RelevancePropagation.FlatRule(),
 ),
)
source
RelevancePropagation.EpsilonAlpha2Beta1FlatFunction
EpsilonAlpha2Beta1Flat(; [epsilon=1.0f-6])

Composite using the following primitives:

julia> EpsilonAlpha2Beta1Flat()
Composite(
  GlobalTypeMap(  # all layers
    Flux.Conv               => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
    Flux.ConvTranspose      => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
    Flux.CrossCor           => RelevancePropagation.AlphaBetaRule{Float32}(2.0f0, 1.0f0),
    Flux.Dense              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.Scale              => RelevancePropagation.EpsilonRule{Float32}(1.0f-6),
    Flux.LayerNorm          => RelevancePropagation.LayerNormRule(),
    typeof(NNlib.dropout)   => RelevancePropagation.PassRule(),
    Flux.AlphaDropout       => RelevancePropagation.PassRule(),
    Flux.Dropout            => RelevancePropagation.PassRule(),
    Flux.BatchNorm          => RelevancePropagation.PassRule(),
    typeof(Flux.flatten)    => RelevancePropagation.PassRule(),
    typeof(MLUtils.flatten) => RelevancePropagation.PassRule(),
    typeof(identity)        => RelevancePropagation.PassRule(),
 ),
  FirstLayerTypeMap(  # first layer
    Flux.Conv          => RelevancePropagation.FlatRule(),
    Flux.ConvTranspose => RelevancePropagation.FlatRule(),
    Flux.CrossCor      => RelevancePropagation.FlatRule(),
 ),
)
source

Manual rule assignment

For manual rule assignment, use ChainTuple, ParallelTuple and SkipConnectionTuple, matching the model structure:

Custom rules

These utilities can be used to define custom rules without writing boilerplate code. To extend these functions, explicitly import them:

RelevancePropagation.modify_parametersFunction
modify_parameters(rule, parameter)

Modify parameters before computing the relevance.

Note

Use of a custom function modify_layer will overwrite functionality of modify_parameters, modify_weight and modify_bias for the implemented combination of rule and layer types. This is due to the fact that internally, modify_weight and modify_bias are called by the default implementation of modify_layer. modify_weight and modify_bias in turn call modify_parameters by default.

The default call structure looks as follows:

┌─────────────────────────────────────────┐
│              modify_layer               │
└─────────┬─────────────────────┬─────────┘
          │ calls               │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│   modify_weight   │ │    modify_bias    │
└─────────┬─────────┘ └─────────┬─────────┘
          │ calls               │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_parameters │ │ modify_parameters │
└───────────────────┘ └───────────────────┘
source
RelevancePropagation.modify_weightFunction
modify_weight(rule, weight)

Modify layer weights before computing the relevance.

Note

Use of a custom function modify_layer will overwrite functionality of modify_parameters, modify_weight and modify_bias for the implemented combination of rule and layer types. This is due to the fact that internally, modify_weight and modify_bias are called by the default implementation of modify_layer. modify_weight and modify_bias in turn call modify_parameters by default.

The default call structure looks as follows:

┌─────────────────────────────────────────┐
│              modify_layer               │
└─────────┬─────────────────────┬─────────┘
          │ calls               │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│   modify_weight   │ │    modify_bias    │
└─────────┬─────────┘ └─────────┬─────────┘
          │ calls               │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_parameters │ │ modify_parameters │
└───────────────────┘ └───────────────────┘
source
RelevancePropagation.modify_biasFunction
modify_bias(rule, bias)

Modify layer bias before computing the relevance.

Note

Use of a custom function modify_layer will overwrite functionality of modify_parameters, modify_weight and modify_bias for the implemented combination of rule and layer types. This is due to the fact that internally, modify_weight and modify_bias are called by the default implementation of modify_layer. modify_weight and modify_bias in turn call modify_parameters by default.

The default call structure looks as follows:

┌─────────────────────────────────────────┐
│              modify_layer               │
└─────────┬─────────────────────┬─────────┘
          │ calls               │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│   modify_weight   │ │    modify_bias    │
└─────────┬─────────┘ └─────────┬─────────┘
          │ calls               │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_parameters │ │ modify_parameters │
└───────────────────┘ └───────────────────┘
source
RelevancePropagation.modify_layerFunction
modify_layer(rule, layer)

Modify layer before computing the relevance.

Note

Use of a custom function modify_layer will overwrite functionality of modify_parameters, modify_weight and modify_bias for the implemented combination of rule and layer types. This is due to the fact that internally, modify_weight and modify_bias are called by the default implementation of modify_layer. modify_weight and modify_bias in turn call modify_parameters by default.

The default call structure looks as follows:

┌─────────────────────────────────────────┐
│              modify_layer               │
└─────────┬─────────────────────┬─────────┘
          │ calls               │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│   modify_weight   │ │    modify_bias    │
└─────────┬─────────┘ └─────────┬─────────┘
          │ calls               │ calls
┌─────────▼─────────┐ ┌─────────▼─────────┐
│ modify_parameters │ │ modify_parameters │
└───────────────────┘ └───────────────────┘
source

Compatibility settings:

RelevancePropagation.LRP_CONFIG.supports_layerFunction
LRP_CONFIG.supports_layer(layer)

Check whether LRP can be used on a layer or a Chain. To extend LRP to your own layers, define:

LRP_CONFIG.supports_layer(::MyLayer) = true          # for structs
LRP_CONFIG.supports_layer(::typeof(mylayer)) = true  # for functions
source
RelevancePropagation.LRP_CONFIG.supports_activationFunction
LRP_CONFIG.supports_activation(σ)

Check whether LRP can be used on a given activation function. To extend LRP to your own activation functions, define:

LRP_CONFIG.supports_activation(::typeof(myactivation)) = true  # for functions
LRP_CONFIG.supports_activation(::MyActivation) = true          # for structs
source

CRP

RelevancePropagation.CRPType
CRP(lrp_analyzer, layer, features)

Use Concept Relevance Propagation to explain the output of a neural network with respect to specific features in a given layer.

Arguments

  • lrp_analyzer::LRP: LRP analyzer
  • layer::Int: Index of layer after which the concept is located
  • features: Concept / feature to explain.

See also TopNFeatures and IndexedFeatures.

References

[1] R. Achtibat et al., From attribution maps to human-understandable explanations through Concept Relevance Propagation

source
XAIBase.TopNFeaturesType
TopNFeatures(n)

Select top-n features.

For outputs of convolutional layers, the relevance is summed across height and width channels for each feature.

See also IndexedFeatures.

Note

The XAIBase interface currently assumes that features have either 2 or 4 dimensions ((features, batchsize) or (width, height, features, batchsize)).

It also assumes that the batch dimension is the last dimension of the feature.

Example

julia> feature_selector = TopNFeatures(2)
 TopNFeatures(2)

julia> feature = rand(3, 2)
3×2 Matrix{Float64}:
 0.265312  0.953689
 0.674377  0.172154
 0.649722  0.570809

julia> feature_selector(feature)
2-element Vector{Vector{CartesianIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}}}:
 [CartesianIndices((2:2, 1:1)), CartesianIndices((1:1, 2:2))]
 [CartesianIndices((3:3, 1:1)), CartesianIndices((3:3, 2:2))]

julia> feature = rand(3, 3, 3, 2);

julia> feature_selector(feature)
2-element Vector{Vector{CartesianIndices{4, NTuple{4, UnitRange{Int64}}}}}:
 [CartesianIndices((1:3, 1:3, 2:2, 1:1)), CartesianIndices((1:3, 1:3, 1:1, 2:2))]
 [CartesianIndices((1:3, 1:3, 1:1, 1:1)), CartesianIndices((1:3, 1:3, 3:3, 2:2))]
source
XAIBase.IndexedFeaturesType
IndexedFeatures(indices...)

Select features by indices.

For outputs of convolutional layers, the index refers to a feature dimension.

See also See also TopNFeatures.

Note

The XAIBase interface currently assumes that features have either 2 or 4 dimensions ((features, batchsize) or (width, height, features, batchsize)).

It also assumes that the batch dimension is the last dimension of the feature.

Example

julia> feature_selector = IndexedFeatures(2, 3)
 IndexedFeatures(2, 3)

julia> feature = rand(3, 3, 3, 2);

julia> feature_selector(feature)
2-element Vector{Vector{CartesianIndices{4, NTuple{4, UnitRange{Int64}}}}}:
 [CartesianIndices((1:3, 1:3, 2:2, 1:1)), CartesianIndices((1:3, 1:3, 2:2, 2:2))]
 [CartesianIndices((1:3, 1:3, 3:3, 1:1)), CartesianIndices((1:3, 1:3, 3:3, 2:2))]

julia> feature = rand(3, 2);

julia> feature_selector(feature)
 1-element Vector{Vector{CartesianIndices{2, Tuple{UnitRange{Int64}, UnitRange{Int64}}}}}:
  [CartesianIndices((2:2, 1:1)), CartesianIndices((2:2, 2:2))]
source

Index