LRP Rule Overview
Notation
We use the following notation for LRP rules:
- $W$ is the weight matrix of the layer
- $b$ is the bias vector of the layer
- $a^k$ is the activation vector at the input of layer $k$
- $a^{k+1}$ is the activation vector at the output of layer $k$
- $R^k$ is the relevance vector at the input of layer $k$
- $R^{k+1}$ is the relevance vector at the output of layer $k$
- $\rho$ is a function that modifies parameters (what we call
modify_parameters
) - $\epsilon$ is a small positive constant to avoid division by zero
Subscript characters are used to index vectors and matrices (e.g. $b_i$ is the $i$-th entry of the bias vector), while the superscripts $^k$ and $^{k+1}$ indicate the relative positions of activations $a$ and relevances $R$ in the model. For any $k$, $a^k$ and $R^k$ have the same shape.
Note that all terms in the following equations are scalar value, which removes the need to differentiate between matrix and element-wise operations. For more information, refer to the developer documentation.
Basic rules
RelevancePropagation.ZeroRule
— TypeZeroRule()
LRP-$0$ rule. Commonly used on upper layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i \frac{W_{ij}a_j^k}{\sum_l W_{il}a_l^k+b_i} R_i^{k+1}\]
References
- S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
RelevancePropagation.EpsilonRule
— TypeEpsilonRule([epsilon=1.0e-6])
LRP-$ϵ$ rule. Commonly used on middle layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{W_{ij}a_j^k}{\epsilon +\sum_{l}W_{il}a_l^k+b_i} R_i^{k+1}\]
Optional arguments
epsilon
: Optional stabilization parameter, defaults to1.0e-6
.
References
- S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
RelevancePropagation.PassRule
— TypePassRule()
Pass-through rule. Passes relevance through to the lower layer.
Supports layers with constant input and output shapes, e.g. reshaping layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = R_j^{k+1}\]
Lower layer rules
RelevancePropagation.GammaRule
— TypeGammaRule([gamma=0.25])
LRP-$γ$ rule. Commonly used on lower layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{(W_{ij}+\gamma W_{ij}^+)a_j^k} {\sum_l(W_{il}+\gamma W_{il}^+)a_l^k+(b_i+\gamma b_i^+)} R_i^{k+1}\]
Optional arguments
gamma
: Optional multiplier for added positive weights, defaults to0.25
.
References
- G. Montavon et al., Layer-Wise Relevance Propagation: An Overview
RelevancePropagation.AlphaBetaRule
— TypeAlphaBetaRule([alpha=2.0, beta=1.0])
LRP-$αβ$ rule. Weights positive and negative contributions according to the parameters alpha
and beta
respectively. The difference $α-β$ must be equal to one. Commonly used on lower layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\left( \alpha\frac{\left(W_{ij}a_j^k\right)^+}{\sum_l\left(W_{il}a_l^k+b_i\right)^+} -\beta\frac{\left(W_{ij}a_j^k\right)^-}{\sum_l\left(W_{il}a_l^k+b_i\right)^-} \right) R_i^{k+1}\]
Optional arguments
alpha
: Multiplier for the positive output term, defaults to2.0
.beta
: Multiplier for the negative output term, defaults to1.0
.
References
- S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
- G. Montavon et al., Layer-Wise Relevance Propagation: An Overview
RelevancePropagation.ZPlusRule
— TypeZPlusRule()
LRP-$z⁺$ rule. Commonly used on lower layers.
Equivalent to AlphaBetaRule(1.0f0, 0.0f0)
, but slightly faster. See also AlphaBetaRule
.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{\left(W_{ij}a_j^k\right)^+}{\sum_l\left(W_{il}a_l^k+b_i\right)^+} R_i^{k+1}\]
References
- S. Bach et al., On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
- G. Montavon et al., Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition
Input layer rules
RelevancePropagation.FlatRule
— TypeFlatRule()
LRP-Flat rule. Similar to the WSquareRule
, but with all weights set to one and all bias terms set to zero.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{1}{\sum_l 1} R_i^{k+1} = \sum_i\frac{1}{n_i} R_i^{k+1}\]
where $n_i$ is the number of input neurons connected to the output neuron at index $i$.
References
- S. Lapuschkin et al., Unmasking Clever Hans predictors and assessing what machines really learn
RelevancePropagation.WSquareRule
— TypeWSquareRule()
LRP-$w²$ rule. Commonly used on the first layer when values are unbounded.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac{W_{ij}^2}{\sum_l W_{il}^2} R_i^{k+1}\]
References
- G. Montavon et al., Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition
RelevancePropagation.ZBoxRule
— TypeZBoxRule(low, high)
LRP-$zᴮ$-rule. Commonly used on the first layer for pixel input.
The parameters low
and high
should be set to the lower and upper bounds of the input features, e.g. 0.0
and 1.0
for raw image data. It is also possible to provide two arrays of that match the input size.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k=\sum_i \frac{W_{ij}a_j^k - W_{ij}^{+}l_j - W_{ij}^{-}h_j} {\sum_l W_{il}a_l^k+b_i - \left(W_{il}^{+}l_l+b_i^{+}\right) - \left(W_{il}^{-}h_l+b_i^{-}\right)} R_i^{k+1}\]
References
- G. Montavon et al., Layer-Wise Relevance Propagation: An Overview
Specialized rules
RelevancePropagation.LayerNormRule
— TypeLayerNormRule()
LRP-LN rule. Used on LayerNorm
layers.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_i^k = \sum_j\frac{a_i^k\left(\delta_{ij} - 1/N\right)}{\sum_l a_l^k\left(\delta_{lj}-1/N\right)} R_j^{k+1}\]
Relevance through the affine transformation is by default propagated using the ZeroRule
.
If you would like to assign a special rule to the affine transformation inside of the LayerNorm
layer, call canonize
on your model. This will split the LayerNorm
layer into
- a
LayerNorm
layer without affine transformation - a
Scale
layer implementing the affine transformation
You can then assign separate rules to these two layers.
References
- A. Ali et al., XAI for Transformers: Better Explanations through Conservative Propagation
RelevancePropagation.GeneralizedGammaRule
— TypeGeneralizedGammaRule([gamma=0.25])
Generalized LRP-$γ$ rule. Can be used on layers with leakyrelu
activation functions.
Definition
Propagates relevance $R^{k+1}$ at layer output to $R^k$ at layer input according to
\[R_j^k = \sum_i\frac {(W_{ij}+\gamma W_{ij}^+)a_j^+ +(W_{ij}+\gamma W_{ij}^-)a_j^-} {\sum_l(W_{il}+\gamma W_{il}^+)a_j^+ +(W_{il}+\gamma W_{il}^-)a_j^- +(b_i+\gamma b_i^+)} I(z_k>0) \cdot R^{k+1}_i +\sum_i\frac {(W_{ij}+\gamma W_{ij}^-)a_j^+ +(W_{ij}+\gamma W_{ij}^+)a_j^-} {\sum_l(W_{il}+\gamma W_{il}^-)a_j^+ +(W_{il}+\gamma W_{il}^+)a_j^- +(b_i+\gamma b_i^-)} I(z_k<0) \cdot R^{k+1}_i\]
Optional arguments
gamma
: Optional multiplier for added positive weights, defaults to0.25
.
References
- L. Andéol et al., Learning Domain Invariant Representations by Joint Wasserstein Distance Minimization